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Summary

Acetylcholinesterase (AChE) is a secreted enzyme essential for regulating cholinergic neurotransmission at
neuronal and neuromuscular synapses. In view of the altered expression of AChE in some central neurologi-
cal and neuromuscular disorders with a probable genetic basis, we have identified the chromosomal location
of the gene encoding AChE. Chromosomal in situ suppression hybridization analysis revealed a single gene
to be at 7q22, a result which was confirmed by PCR analysis of genomic DNA from a human/hamster somatic
cell hybrid containing a single human chromosome 7. The AChE gene thus maps to the same region in
which frequent nonrandom chromosome 7 deletions occur in leukemias of myeloid cell precursors known

to express the enzyme during normal differentiation.

Introduction

Acetylcholine exhibits a protean role in cholinergic
neurotransmission; functions as diverse as memory
and the central control of fine motor activity are in-
cluded among its known excitatory and inhibitory ac-
tions. Acetylcholinesterase (AChE) is a serine hydrolase
best known for its role in terminating cholinergic nerve
transmission via the esteratic cleavage of acetylcho-
line. The high turnover number of AChE provides for
a rapid clearing of synapses of acetylcholine, enabling
the postsynaptic cell to quickly recover from the initial
cholinergic discharge. AChE is thus an essential com-
ponent of cholinergic neurotransmission, as is evident
from the full panoply of toxic symptoms arising from
inhibition of this enzyme.

ACHhE is a secreted enzyme that undergoes extensive
posttranslational modification (for reviews, see Mas-
soulie and Toutant 1988; Taylor 1991). Addition of
a variety of anchoring segments to the enzyme enables
multiple forms with identical catalytic functions to be
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tethered to cells in discrete tissue locations. Structur-
ally asymmetric forms containing multiple units of en-
zyme tetramers are found attached to the basal lamina
of pre- and postsynaptic membranes, where they are
anchored by disulfide linkages to a collagen-like tail
unit. An additional heteromeric species consists of an
amphiphilic form containing tetramers of catalytic
subunits that are disulfide-linked to a hydrophobic
structural subunit. Homomeric forms of AChE are
represented by a soluble form and an amphiphilic form
which attaches to cell membranes by a glycophos-
pholipid moiety linked to the carboxyl terminus of the
protein (Roberts et al. 1987; Silman and Futerman
1987). The latter species is the major form of AChE
found in mature erythrocytes. In spite of the diverse
nature of AChE molecules expressed in various tis-
sues, molecular characterization of gene products
(Gibney and Taylor 1990), cDNA clones (Schumacher
et al. 1988; Sikorav et al. 1988), and genomic DNA
clones (Maulet et al. 1990; Getman et al. 1991; Li et
al. 1991) has revealed that a single gene encodes the
AChE polypeptide in Torpedo and mammals. A simi-
lar conclusion was reached from genetic studies in
birds (Rotundo 1988). Expression of polymorphic
forms of the enzyme in various tissues is thus the result
of alternative splicing of mRNA to produce multiple
polypeptides containing a constant catalytic domain
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but which differ only in their carboxyl termini (Sikorav
et al. 1988; Gibney and Taylor 1990; Maulet et al.
1990; Li et al. 1991).

While the essential function of AChE in coordinat-
ing cholinergic neurotransmission probably precludes
the survival of individuals with an AChE gene locus
mutation that interferes with expression of the pro-
tein, certain pathological conditions do feature promi-
nent alterations of AChE expression. Notable among
these is a rare autosomal recessive myasthenic syn-
drome characterized by an absence of the asymmetric
form of AChE in neuromuscular junction endplates,
along with a marked decrease in total skeletal muscle
ACHhE activity (Engel 1990). The molecular basis for
this disorder has not been elucidated. Other neuro-
pathological disorders also show characteristic al-
terations in AChE distribution when ascertained by
histochemistry. Examination of brain tissue from indi-
viduals with senile dementia of the Alzheimer type
reveals decreased AChE activity in the hilum, dentate
gyrus, fimbria, temporal neocortex, and hippocampus
(Perry et al. 1980). In contrast, neurofibrillary tangles
and amyloid plaques, both hallmarks of the disorder,
show intense staining for the enzyme, a phenomenon
which is also associated, in the basal forebrain, with
degenerating axons en route to their cortical fields
(Mesulam and Moran 1987; Tago et al. 1987). AChE
may therefore be intimately involved in the pathology
associated with Alzheimer disease. In view of the
genetic basis for some forms of Alzheimer disease
(Haynes et al. 1989), as well as a probable genetic
linkage in certain neuromuscular disorders, we have
defined the chromosomal location of the human AChE
gene by fluorescence in situ suppression hybridization
(FISSH) and PCR amplification of human/hamster so-
matic cell hybrid DNA.

Material and Methods
Hybrid Cell Lines and Cosmid Clones

Genomic DNA samples from human/hamster so-
matic hybrid cell lines were obtained from the Human
Genetic Mutant Cell Repository (Camden, NJ). Cell
line GM10791 (repository #NA10791) contains a sin-
gle human chromosome 7 with the normal hamster
genomic complement. Cell line GM10115 (repository
#NA10115) contains human chromosome 4. Cosmid
clones containing the human AChE gene were isolated
from a placenta genomic library according to proce-
dures described by Li et al. (1991).
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FISSH

Preparation of metaphase chromosome spreads, bi-
otinylation and hybridization of cosmids, and sup-
pression reactions were performed according to meth-
ods described elsewhere (Lichter et al. 1988, 1990).
Hybridized probe was visualized by treating slides
with fluoresceinated avidin and biotinylated goat
anti-avidin (Vector Laboratories), both at 5§ pg/ml
(Selleri et al. 1991). Images were produced with a laser
scanning confocal microscope (Bio-Rad MRC 500).
Separation of images produced by fluorescein isothio-
cyanate (550 mm) and propidium iodide (610 nm)
fluorescence was achieved by the use of narrow band-
pass filters according to a method described elsewhere
(Selleri et al. 1991). Composite views encompassing
both signals were then achieved by superimposing the
images electronically.

PCR Amplifications

Reactions were performed with Tag polymerase
(Perkin Elmer Cetus) in a model 50 tempcycler (Coy
Laboratory Products). The sequence of the two prim-
ers used to amplify the intron region between exons
2 and 3A of AChE are as follows: HU2-3#6,
5-GCGAATTCAGGCCGTGTTCACAGC-3’ (anti-
sense); and HU2-347, 5'-CGAATTCTATGCAGGG-
GCCAGCG-3' (sense) (also see fig. 1, top). The nu-
cleotides, highlighted in boldface in each primer
sequence, constitute restriction-site linkers added, in
previous experiments, for cloning purposes. Amplifi-
cation reactions were carried out in 50-ul volumes by
using 10 cycles, each consisting of denaturation at
94°C for 1 min, annealing at 49°C for 2 min, and
extension at 72°C for 2 min. An additional 30 cycles
of amplification then followed, each consisting of de-
naturation at 94°C for 1 min, annealing at 71°C for
2 min, and extension at 72°C for 2 min. An additional
7-min extension step followed the last amplification
cycle. Reaction products were visualized by electro-
phoresing 10-pl samples of each reaction on 2% agar-
ose gels. Products were then analyzed by Southern
blotting of the gel and by hybridization with 3?P end-
labeled oligonucleotide probe HU2-3#5 (see fig. 1,
top).

Results

Physical mapping of genes on chromosomes is
greatly facilitated by FISSH when cosmid clones la-
beled with biotin derivatives are used. We have used



HU2-3#7
...................................... 4
CTTCCTCCCCAAATTGCCTCAGCGCCACCGGTATGCAGGGGCCAGCGGGCAG

CGCTGGGAGGAGGGGAGTGGGAGCCCGCCAGTGTAACCCCTCTCTTCTCCCC
HU2-3#5
CTAGCCTCGGAGGCTCCCAGCACCTGCCCAGGCTTCACCCATGGGGAGGCTG

CTCGGAGGCCCGGCCTCCCCCTGCCCCTCCTCCTCCTCCACCAGCTTCTCCT
HU2-3#6
CCTCTTCCTCTCCCACCTCCGGCGGCTGTGAACACGGCCTCTTCCCCTACGG
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Figure | PCR amplification of AChE gene sequence from
human/hamster somatic cell hybrid DNA. Top, nucleotide se-
quence of a portion of the intron between exon 2 and exon 3A of
the AChE gene (for complete structure of the gene, see Li et al.
1991). Primers HU2-3#6 and HU2-3#7 were used for the PCR
amplification. Bottom, Autoradiograph showing hybridization of
probe HU2-3#5 to 220-bp PCR products from human genomic
DNA (lane 2) and genomic DNA from a human/hamster hybrid
cell line containing a single human chromosome 7 (lane 4). No
amplification was observed either when DNA from a human/ham-
ster hybrid cell line containing a single human chromosome 4 (lane
3) was used or from a reaction containing no DNA (lane 1).

FISSH to identify the location of the AChE gene on
chromosome 7 in normal human metaphase chromo-
some spreads. Cosmid clone p18D1-1 is a pWE1S5
construct (Wahl et al. 1987) that contains approxi-
mately 40 kb of genomic sequence. The entire AChE
coding sequence is contained within 4.8 kb of this
insert (Getman et al. 1991; Li et al. 1991). This clone
was labeled and hybridized to metaphase spreads
made from normal human lymphocytes. The results
shown in figure 2A clearly place the gene on the long
arm of chromosome 7. Further examination of the
G-type banding pattern resulting from propidium
staining revealed this gene to be located in band q22
(fig. 2B).

To confirm this result, we used PCR to amplify the
AChE gene sequence from human/hamster somatic
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cell genomic DNA from a hybrid cell line containing
a single human chromosome 7. The primers used in
this amplification, HU2-3#6 and HU2-3#7, are lo-
cated within the intron between exons 2 and 3A of the
AChE gene (fig. 1, top). The identity of the DNA
sequences amplified by PCR was confirmed by South-
ern blotting of the PCR-amplified products onto nitro-
cellulose membrane, then by probing the products
with a third oligonucleotide primer (HU2-3#5) lo-
cated within the 2-3 intron. Use of primers HU2-3#6
and HU2-3#7 in the PCR reaction allowed the ampli-
fication of a 220-bp fragment in human genomic DNA
and in somatic cell hybrid DNA containing human
chromosome 7 (fig. 1, bottom, lanes 2 and 4, respec-
tively). To ensure that DNA fragments produced in
the PCR reaction were not of hamster origin, we also
amplified genomic DNA obtained from a human/
hamster somatic hybrid-cell line containing human
chromosome 4. This DNA showed no amplification
product on the gel, under identical reaction conditions
(fig. 1, bottom, lane 3).

Discussion

The extensive structural diversity of AChE mole-
cules is thought to provide a means for anchoring the
enzyme in specific tissue environments. A variety of
posttranscriptional and posttranslational mechanisms
are known to be employed in producing this diversity
(Schumacher et al. 1988; Sikorav et al. 1988), which
reinforces studies using Torpedo (Maulet et al. 1990)
and mammalian (Li et al. 1991) tissues, that identified
only a single gene encoding the AChE polypeptide.
The data presented here provide visible confirmation
for the existence of a single gene for AChE in higher
organisms, a finding which matches that from studies
of the quail genes (Rotundo 1988) and the Drosophila
AChE genes (Nagoshi and Gelbart 1987) but which
differs from the three genetic loci that reportedly in-
fluence AChE activity in Caenorbabditis elegans (John-
son et al. 1988).

At present there is no evidence that suggests that a
chromosomal abnormality in the AChE locus at 7q22
is involved in the genesis of neuropathological condi-
tions such as Alzheimer disease, although trisomy 7
has been detected in some cell types in brain tissue both
from normal individuals and from patients diagnosed
with malignant gliomas (Heim et al. 1989). Figure 3
shows genes that have been found on the long arm of
chromosome 7, including proa,(I) collagen at 7q21.3
(Kere et al. 1991), laminin B1 at 7q22 (Pikkarainen



Figure 2 FISSH with cosmid DNA containing the AChE gene, to metaphase chromosomes from normal human lymphocytes.
Biotinylated cosmid DNA was prepared as described by Lichter et al. (1990) and was detected by fluoresceinated avidin. Visualization of
chromosomes was achieved by staining with propidium. Images were prepared by collecting data on a Bio-Rad MRC500 confocal microscope
and by electronically enhancing fluorescent signals from each dye. A, Hybridization of AChE clone p18D1-1 to two pairs of chromosome
7 chromatids. B, Enlarged view, showing location of hybridized probe in the q22 region of the chromosome.
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Figure 3 Ideogram of human chromosome 7, showing the

physical location of the AChE gene and other genes on the long
arm. EPO = erythropoietin; MDR = multi-drug resistance P-gly-
coprotein 1; PAI-1 = plasminogen activator inhibitor type 1; MET
= c-met proto-oncogene; PDGF-A = platelet-derived growth fac-
tor A chain; COL1A2 = proa,(1) collagen; LAMB = laminin B1;
CFTR = CF transmembrane regulator.

et al. 1987), and the cystic fibrosis transmembrane
regulator (CFTR) at 7q31.1-31.3 (Rommens et al.
1989; Green and Olson 1990). A number of genes
expressed in hematopoietic tissues have also been lo-
calized on or near the q22 band of chromosome 7.
These include genes encoding the YT blood group
antigen (Zelinski et al. 1991), platelet-derived growth
factor A chain, plasminogen activator inhibitor type
1, the multidrug-resistance P-glycoprotein, erythro-
poietin, and MET (Dean et al. 1985; Kereetal. 1991).
The MET locus corresponds to the proto-oncogene
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c-met, a membrane-bound tyrosine kinase expressed
in Hodgkin lymphoma cell lines (Jucker et al. 1990)
and in many other tissues. c-met serves as the receptor
for the plasminogen-related protein hepatocyte growth
factor (HGF) (Buttaro et al. 1991). Like AChE, HGF
is located in leukocytes and in platelets (Nakamura
et al. 1987), which indicates that it is expressed in
megakaryocytes. The presence of glycophospholipid-
anchored forms of AChE on erythrocyte membranes
(Roberts et al. 1987) and the expression of the enzyme
during megakaryocyte differentiation (Burstein et al.
1985) would qualify AChE as a member of this group
of hematopoiesis-related genes. However, it is possi-
ble that the apparent grouping of hematopoietic genes
in this region is merely a function of the source of
cloned sequences available for localization studies,
since it has been estimated that 2,700 genes are located
on chromosome 7 (Stephens et al. 1990).

The chromosomal location of the AChE gene may
be of relevance to the expression of the enzyme in cells
of the myeloid lineage, since abnormalities in chromo-
some 7 are a consistent nonrandom cytogenetic find-
ing in acute nonlymphocytic leukemia (ANLL) and
myelodysplastic syndromes (MDS) (Bernstein et al.
1984). These disorders are commonly found in pa-
tients who have been exposed to chemotherapy or ra-
diation treatments and are characterized by abnormal-
ities in differentiation and proliferation of multiple cell
types of the myeloid lineage. In one retrospective study
of chromosome 7 abnormalities in ANLL (Bernstein
etal. 1984; Kereetal. 1987, 1989), the most common
breakpoint (found in 10 of 17 patients) on the long
arm of the chromosome was found to be at 7q22,
which is the same region in which the AChE gene is
located. A more recent review of 31 cases of histo-
chemically diagnosed megakaryoblastic leukemia also
revealed a frequent occurrence of —7/7g-chromo-
some abnormalities (Cuneo et al. 1989). Since the ex-
pression of AChE during megakaryocyte differentia-
tion is considered to be phenotypic for maturation of
these cells (Burstein et al. 1985), disruption of the
AChE gene locus by chromosomal deletion may inter-
fere with normal megakaryocyte maturation, leading
to inappropriate proliferative growth of megakaryo-
cyte precursors. This possibility is supported by evi-
dence that indicates that abnormal proliferation of
mouse megakaryocyte precursors can be induced,
both in vivo and in vitro, by esterase inhibitors and
acetylcholine analogues (Burstein et al. 1985; Patinkin
et al. 1990).

The butyrylcholinesterase (BChE) and AChE genes
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have been found to be coamplified in peripheral blood
cells of some patients with platelet disorders resulting
from abnormal megakaryocytopoiesis (Lapidot-Lifson
et al. 1989). It is interesting that the BChE gene has
been mapped by linkage analysis and by in situ hybrid-
ization to two positions on chromosome 3 (i.e., 3q21
and 3q26) (Soreq et al. 1987; Zakut et al. 1989), a
region in which chromosomal breakpoints have been
found in some cases of megakaryoblastic leukemia
(Cuneoetal. 1989) and in tumors of neuronal and glial
origin (Berger et al. 1985). More recent fine-mapping
studies have confirmed by in situ hybridization that
the BChE gene is located at the 3q26.1-q26.2 region
of chromosome 3 (Gaughanet al. 1991). BChE probes
have also been reported to hybridize to an additional
site on chromosome 16 (i.e., 16q12-24) (Zakut et al.
1989), although genomic cloning studies have deter-
mined that a single gene encodes the BChE polypep-
tide (Arpagauset al. 1990). Our finding that the AChE
gene is localized to chromosome 7 indicates that the
multiple sites reported in BChE gene localization stud-
ies are not due to cross-hybridization of BChE probes
to AChE gene sequence.

Amplification of AChE and BChE genes in patients
with MDS may be the result of gene replication similar
to the DNA amplification that has been reported to be
associated with chromosomal breakpoints in a num-
ber of other malignancies (Bishop 1987). Future stud-
ies involving fine mapping of both loci will be required
for an understanding of the relationship between ester-
ase genes and chromosomal breakpoints in myeloid
disease.
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